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Abstract

A drawback of traditional default logic is that there is
no general mechanism for preferring one default rule
over another. To remedy this problem, numerous de-
fault logics augmented with priority relations have been
introduced. In this paper, we show how trust values, de-
rived from web-based social networks, can be used to
prioritize defaults. We provide a coupling between the
method for computing trust values in social networks
and the prioritized Reiter defaults of (Baader & Hollun-
der 1995), where specificity of terminological concepts
is used to prioritize defaults. We compare our approach
with specificity-based prioritization, and discuss how
the two can be combined. Finally, we show how our
approach can be applied to other variants of prioritized
default logic.

Introduction
We are often given conflicting information from distinct
sources, forcing us into a decision about what information
to accept. This problem is especially complex on the web,
where the information sources are many and varied. Our
decision in these cases is sometimes reduced to picking the
more highly trusted information source. If we think of the
information given by sources as a set of default rules, our
problem boils down to the following: given defaults from
distinct sources which support conflicting conclusions, how
should these defaults be prioritized to end up with the most
reliable conclusion?

The machinery for expressing priorities between defaults
is rich and well-studied, but the question of how these pri-
orities should be generated is frequently left for the user
to manually input. When using trust to prioritize defaults,
Web-Based Social Networks (WBSNs) offer an accessible
source of trust information. We argue that WBSNs can be
used to automatically obtain a set of priorities which reflect
the user’s levels of trust in the information sources.

Within WBSNs, users often reveal information about their
relationships with one another. That includes quantitative
values representing how much they trust people they know.
Using algorithms presented in this work, trust values can be
composed to generate recommendations about how much a
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user should trust an unknown person in the social network.
When default rules are asserted on the web and provenance
information is available, these trust values can be used to
rate the trustworthiness of the source of each default. That
can, in turn, be used as a measure of a default’s priority.

In this paper, we show how trust values, derived from
web-based social networks, can be used to prioritize de-
faults. We provide a coupling between the method for
computing trust values in social networks given in (Gol-
beck 2005) and the prioritized terminological defaults of
(Baader & Hollunder 1995), where specificity of concepts
is used to prioritize defaults. We compare our approach with
specificity-based prioritization, and discuss how the two can
be combined.

Nonmonotonic Reasoning with Default Rules
When we reason, we often use various rules that are gener-
ally but not universally true. For example, we might infer
from (P1) The flight is scheduled to leave at 11:00 and (P2)
Flights usually leave on time, that we should: (C) Be at the
airport in time for an 11:00 flight. While it’s certainly not
true thateveryflight leaves on time, the premise that this is
typically true is what licensed our inference. We can for-
malize a statement such as (P2) usingdefault rules. Below
we briefly describe Reiter defaults and their simple exten-
sion to allow priorities. For the sake of simplicity, we have
chosen the account of prioritized defaults given in (Baader
& Hollunder 1995). However, our method for combining
trust with priorities can be applied to many other variants of
defaults.

Reiter Defaults

A Reiter default(henceforth ’default’) is of the form:

α : β

γ

whereα, β andγ are formulae of first-order logic. The for-
mulaα is theprerequisite, β the justificationandγ thecon-
sequent. A default rule can be read intuitively as:if I can
prove the prerequisite from what I believe, and the justifica-
tion is consistent with what I believe, then add the conse-
quent to my set of beliefs.



Definition 1 (Default Theory) A default theoryT is a pair
〈W,D〉 whereW is a finite set of formulae representing the
initial world description (or initial set of beliefs), andD is
a finite set{δ1, ..., δn} of defaults. T is closed if no free
variables appear in eitherW or D.

We will assume for simplicity that free variables in de-
faults only stand for ground instances. We also, for the sake
of exposition, assume that every default has only one justifi-
cation formulaβ, though our approach does not rely on this
restriction. On these points, we follow (Baader & Hollunder
1995) where the reader may find the details.

The premise (P2) from our earlier example can be formal-
ized as follows:

δf =
Flight(x) : OnTime(x)

OnTime(x)

Suppose thatW = {Flight(flight714)} and D =
{δf}. Then W ` Flight(flight714), and W ∪
{OnTime(flight714)} is consistent, meaning the default
δf is active. Since δf is active, we apply it and obtain
W = W ∪ {OnTime(flight714)}. The setTh(W ∪
{OnTime(flight714)}) is called anextension, which we
characterize formally below.

Definition 2 (Reiter Extension) Given a set of closed for-
mulaeE and a closed default theory〈W,D〉, let E0 = W
and∀i ≥ 0 define:

Ei+1 = {γ | α : β

γ
∈ D,α ∈ Th(Ei) and¬β 6∈ E}

ThenE is an R-extension of〈W,D〉 iff E =
⋃

i≥0 Th(Ei)

The above theory has one extension, namelyTh(W ∪
{Flight(flight714)}). Contrast this with the case where
W is:

{Flight(flight714), Delayed(flight714), Delayed(x) →
¬OnTime(x)}

In this example,W ∪ {OnTime(flight714)} is
inconsistent and the inference thatOnTime(flight714)
is blocked. Thus, this theory has no extension where
OnTime(flight714) holds.

Cases of Conflict

Default rules can conflict. A simple abstract example is
when two defaults,δ1 andδ2 are applicable (i.e. their jus-
tifications are consistent with our knowledge) yet the con-
sequent ofδ1 is inconsistent with the consequent ofδ2. We
then typically end up withtwo extensions; one where the
consequent ofδ1 holds, and one where the consequent of
δ2 holds. The case of two conflicting defaults is illustrated
below, although it is possible to have arbitrarily many con-
flicting extensions with a larger set of defaults.

Definition 1 (Chomsky Diamond) Let T = 〈W,D〉 and
W = {Professor(chomsky), Activist(chomsky)}, D =
{δ1, δ2}, where:

δ1 =
Professor(x) : Passive(x)

Passive(x)

δ2 =
Activist(x) : ¬Passive(x)

¬Passive(x)

Note thatT has two extensions,E1 andE2. In one,

¬Passive(chomsky) ∈ E1

while in the other,

Passive(chomsky) ∈ E2.

It is often desirable to resolve conflicting defaults likeδ1

andδ2. This can be done by introducingpriorities. Given a
priority relation>, we interpretδ2 > δ1 to mean thatδ2 has
higher priority thanδ1.

Definition 3 (Prioritized Default Theory) A prioritized
default theoryT is a triple 〈W,D, <〉, whereW,D are as
usual, and< is a partial ordering onD.

A prioritized version ofT would beT = 〈W,D, <〉. It is
easy to see that ifδ2 > δ1, thenE2 should not be an exten-
sion ofT . The reason is that sinceδ2 has higher priority, it
should be applied first, which in turns blocks the application
of δ1. The definition formalizing this intuition, following
(Baader & Hollunder 1995) again, is given below.

Definition 4 Let T = 〈W,D, <〉 be a prioritized default
theory, andE a set of formulae. LetE0 = W, and∀i ≥ 0
define:

Ei+1 = Ei ∪ {γ | d =
α : β

γ
∈ D, α ∈ Th(Ei),¬β 6∈ E ,

and everyd′ > d is not active inEi}

ThenE is a P-extension of〈W,D, <〉 iff E =
⋃

i≥0 Th(Ei)

It is easy to see now that in the above example, ifδ2 > δ1,
thenE2 is not an extension. Similarly, ifδ1 > δ2 were true,
thenE1 would not be an extension.

There have been many other approaches to prioritized de-
fault logic, where a priority relation is introduced in either
the object or the meta language. We refer the reader to (Del-
grande & Schaub 2000) for an extensive survey.

Regardless of the specifics of a given approach, some
kinds of priority relations are undesirable. In particular, it
is unrealistic to require the priority relation to be a total or-
dering over the defaults, especially if we are dealing with
a large and changing collection of defaults. We follow the
more common and flexible approach which only requires the
priority relation to be a partial ordering.

In previous approaches, the priority relation was usually
taken as a given, and sometimes compiled into the object
language and reasoned over. In contrast, our priorities are
based on the trust rating of the sources of the defaults−i.e.
their creators−in a web-based social network. The next sec-
tion introduces the concept of trust in web-based social net-
works, and a corresponding algorithm for computing trust
ratings. In section we apply this work to the case of priori-
tizing defaults.



Trust in Web-based Social Networks
Web-based social networks (WBSNs) are online communi-
ties where users maintain lists of people they know. Other
users can browse those connections, and access contact and
profile information about people in the network. The pop-
ularity of WBSNs has grown dramatically over the last few
years, with hundreds of networks that have hundreds of mil-
lions of members. Within WBSNs, a variety of features are
available to allow users to annotate their relationship; trust
is one of these.

When trust is assigned on a quantitative scale, we can
make computations with trust values in the network. If we
choose a specific user and look at all of the trust ratings as-
signed to that person, we can see the average opinion about
the person’s trustworthiness. Trust, however, is a subjective
concept where averages are often unhelpful. Consider the
simple example of asking weather the President is trustwor-
thy. Some people believe very strongly that he is, and others
believe very strongly that he is not. In this case, the aver-
age trust rating is not useful to either group. However, given
provenance information about the trust annotations, we can
significantly improve on the average case. If someone (the
source) wants to know how much to trust another person
(thesink), we can look at the who trusts the sink, see how
much the source trusts the intermediate people, and produce
a result that weights ratings from trusted people more highly
than those from untrusted people.

In this section, we present a description of and algorithm
for inferring trust values, and show how the results can be
applied.

Background and Related Work

We present an algorithm for inferring trust relationships in
social networks, but this problem has been approached in
several ways before. Here, we highlight some of the major
contributions from the literature and compare and contrast
them with our approach.

Trust has been studied extensively in peer-to-peer sys-
tems including (Kamvar, Schlosser, & Garcia-Molina 2004),
(Aberer & Despotovic 2001), (Lee, Sherwood, & Bhat-
tacharjee 2003). There are basic differences in the mean-
ing of trust in P2P networks and social networks that makes
these algorithms inappropriate for social use. In P2P sys-
tems, trust is a measure of performance, and one would not
expect the performance ofpeera to be very different when
it is interacting withpeerb vs. peerc. Thus, one global rec-
ommendation about the trustworthiness ofpeera will usu-
ally be sufficient. Socially, though, two individuals can have
dramatically different opinions about the trustworthiness of
the same person. Our algorithms intentionally avoid using
a global trust value for each individual to preserve the per-
sonal aspects that are foundations of social trust.

There are several algorithms for computing trust in social
networks specifically. A thorough treatment can be found
in (Golbeck 2005). Our algorithm differs from most ex-
isting algorithms in one of three major ways: we output
recommendations in the same scale that users assign trust
(vs. eigenvector based approaches like (Ziegler & Lausen

Figure 1: An illustration of direct trust values between nodes
A and B (tAB), and between nodes B and C (tBC). Using
a trust inference algorithm, it is possible to compute a value
to recommend how much A may trust C (tAC).

2004)), our computations are about people (vs. trust in state-
ments as in (Richardson, Agrawal, & Domingos 2003)), and
we create personalized recommendations (vs. global ratings
as are used in P2P systems and (Levin & Aiken 1998)).

TidalTrust: An Algorithm for Inferring Trust

When two individuals know each other, they can assess the
trustworthiness of one another. Two people who are not di-
rectly connected do not have a foundation for knowing about
trust. However, the paths connecting them in the network
contain information that can be used to infer how much they
may trust one another.

For example, consider that Alice trusts Bob, and Bob trust
Charlie. Although Alice does not know Charlie, she knows
and trusts Bob who, in turn, has information about how trust-
worthy he believes Charlie is. Alice can use information
from Bob and her own knowledge about Bob’s trustworthi-
ness to infer how much she may trust Charlie. This is illus-
trated in Figure 1.

Our algorithm looks at the trust values along paths con-
necting the source and sink to compute a recommendation to
the source about how much to trust the sink. When making
this computation, several features of the network and paths
must be considered to produce the most accurate results. In
this section, we describe how path length and trust values on
paths affect the computations, and how these features were
incorporated into our algorithm.

Incorporating Path Length A limit on the depth of the
search should lead to more accurate results, since previous
work (Golbeck 2005)has shown that average error (mea-
sured as the absolute difference between the computed rat-
ing and the user’s rating - call this∆) increases as depth
increases. This intuitively makes sense: getting informa-
tion from one intermediate person should usually be more
reliable than information passed down a long chain of peo-
ple. Accuracy decreases as path length increases, and thus
shorter paths are more desirable. However, the tradeoff is
that fewer nodes will be reachable if a fixed limit is imposed
on the path depth. To balance these factors, we use the short-
est search depth that will produce a result. This preserves the
benefits of a shorter path length without limiting the number
of inferences that can be made.

Incorporating Trust Values Previous research(Ziegler &
Golbeck 2006) also indicates that the most accurate infor-
mation will come from the most highly trusted neighbors.



Algorithm
Network TidalTrust Simple Average
Trust Project 1.09 1.43
FilmTrust 1.35 1.93

Thus, we set a minimum trust threshhold and require only
consider paths where all edges have trust ratings at or above
the threshhold. We want to include only the highest trust rat-
ings possible (ignoring paths that have low values) without
limiting the number of inferences that can be made (because
the threshhold may be so high that no paths exist). We de-
fine a variablemax that represents the largest trust value that
can be used as a minimum threshold such that a path can be
found from source to sink.

Full Algorithm for Inferring Trust Incorporating the el-
ements presented in the previous sections, the final Tidal-
Trust algorithm can be assembled. The name was chosen
because calculations sweep forward from source to sink in
the network, and then pull back from the sink to return the
final value to the source.

tis =

∑
j ∈ adj(j) | tij ≥ max

tijtjs∑
j ∈ adj(j) | tij ≥ max

tij
(1)

TidalTrust is a modified breadth-first search. The source’s
inferred trust rating for the sink (tsource,sink) is a weighted
average if the source’s neighbors’ ratings of the sink (see
Forumula 1). The source node begins a search for the sink.
It will poll each of its neighbors to obtain their rating of the
sink. If the neighbor has a direct rating of the sink, that
value is returned. If the neighbor does not have a direct rat-
ing for the sink, it queries all of its neighbors for their rat-
ings, computes the weighted average as shown in Formula
1, and returns the result. Each neighbor repeats this process,
keeping track of the current depth from the source. Each
node will also keep track of the strength of the path to it,
computed as the minimum of the source’s rating of the node
and the node’s rating of its neighbor. The neighbor records
the maximum strength path leading to it. Once a path is
found from the source to the sink, the depth is set at the
maximum depth allowable. Since the search is proceeding
in a Breadth First Search fashion, the first path found will
be at the minimum depth. The search will continue to find
any other paths at the minimum depth. Once this search is
complete, the trust threshold (max) is established by taking
the maximum of the trust paths leading to the sink. With
themax value established, each node completes the calcu-
lations of a weighted average by taking information from
nodes that they have rated at or above themax threshold.
Those values are passed back to the neighbors who queried
for them, until the final result is computed at the source.

Accuracy of TidalTrust
As presented above, TidalTrust strictly adheres to the ob-
served characteristics of trust: shorter paths and higher trust

values lead to better accuracy. However, there are some
things that should be kept in mind. The most important is
that networks are different. Depending on the subject (or
lack thereof) about which trust is being expressed, the user
community, and the design of the network, the effect of these
properties of trust can vary. While we should still expect the
general principles to be the same−shorter paths will be bet-
ter than longer ones, and higher trusted people will agree
with us more than less trusted people−the proportions of
those relationships may differ from what was observed in
the sample networks used in this research.

There are several algorithms that output trust inferences,
but none of them produce values within the same scale that
users assign ratings. Some trust algorithms form the Public
Key Infrastructure (PKI), such as Beth-Borcherding-Klein
(Beth, Borcherding, & Klein 1994), are more appropriate
for comparison. Due to space limitations that comparison is
not included here, but can be found in (Golbeck 2005). One
direct comparison to make is to compare the∆ from Tidal-
Trust to the∆ from taking the simple average of all ratings
assigned to the sink as the recommendation. We made this
comparison using two real world networks. As shown in
table, the TidalTrust recommendations outperform the sim-
ple average in both networks, and these results are statisti-
cally significant withp < 0.01.

Basing Priority on Trust Values
Given a social network, an ordinary default theoryT , and a
source nodeSrc in the network, we can now now prioritize
the defaults according to trust values.

Algorithm

procedureTrustPrioritize(W, D, Src, Prov):
Input:

(1) A set of initial formulaeW
(2) A source nodeSrc
(3) A setD = {δ1, ..., δn} of defaults,
(4) A functionProv : D → Nodes

Return:
A set of extensions

P := ∅
for everyd, d′ ∈ D:
if TidalTrust(Src, Prov(d)) < TidalTrust(Src, Prov(d′)):
P = P ∪ {d < d′}

if Prov(d) = Src and Prov(d′) 6= Src:
P = P ∪ {d′ < d}

return ComputeExtensionsPL(W, D, P )

The simple algorithm for generating extensions based on
trust values is given below. Note that our method does not
make any assumptions about the specifics of the base default
logic languagePL. We do, however, assume the following
are available:

1. A function ComputeExtensionsPL for computing the
extensions ofPL, which takes a prioritized default theory
as input.

2. A source node, which in our case is the node according to
which priorities will be generated. Intuitively, this can be



Figure 2: The social network between John, Mary, Dave,
Jane and Alice

thought of as our ’viewpoint’ in the social network−we
reason from the perspective of the source node.

If restricted to normal form, any prioritized default theory
of (Baader & Hollunder 1995) is always guaranteed to have
an extension. In addition, every prioritized normal default
extension is also a Reiter extension. Since we have not in
any way changed the semantics of the prioritized defaults, it
is obvious that the same desirable properties hold true for our
approach. For this reason, we restrict ourselves to normal
defaults for the remainder of the paper.

Example: Using Trust for Choosing a Film
Suppose that we are dealing with a film knowledge base. A
group of friends−John, Mary, Dave, Jane and Alice−each
input their film preferences, such as preferred genre or
directors/actors, in the form of default rules. Their prefer-
ences are as follows:

W = {IndieF ilm(hce), SpanishF ilm(hce),
DirectedBy(hce,Almodovar)}

D = {δjohn, δdave, δjane}

δjohn =
Comedy(x)
¬Watch(x)

δjane =
IndieF ilm(x) ∧ SpanishF ilm(x)

¬Watch(x)

δdave =
IndieF ilm(x) ∧Directed(x,Almodovar)

Watch(x)
We assume that every Spanish film is a film, and similarly

that every film directed by anyone (in our case, Almodovar)
is also a film.

In our scenario, John, Mary, Dave and Alice are part of a
social network, shown in Figure 2. The direct trust values
between two nodes in the network are given in bold, while
inferred trust values are italicized and are shown as a dotted
edge.

Suppose that John is trying to decide whether or not he
should watch the filmhce, the only film currently in our
knowledge base. John’s only preference is not to watch
comedies, which does not apply tohce. Simply looking at
the defaults inD, a conflict arises. According toδjane, John
should not watch the movie since it is a Spanish film. On the
other hand, according toδdave, John should watch the film
since it is directed by Almodovar.

Note that John did not directly rate Dave and Jane. John’s
only connection to the two is via Mary, who he highly trusts.
Mary does not have any film preferences, and so we can-
not use her to resolve the conflict. According to TidalTrust,
John’s inferred trust values for Dave and Jane are 8 and 7,
respectively. Thus, the relevant priority yielded in this case
is δjane < δdave, which allows John to conclude that he
should watchhce.

Consider the same scenario, except this time with Alice as
the source node. Unlike John, Alice has direct trust ratings
for Dave and Jane, and unlike Mary, Alice has stated that
Jane is more trusted than Dave Therefore, there will be an
extension where Alice’s conclusion, based on the generated
priorities δdave < δjane, is not to watchhce. Clearly, this
extension is not possible if we pick John as the source node,
differentiating between the two nodes’ relations to the rest
of the social network.

Discussion and Conclusions
Priority of the Source Node
Cases can arise where the source node has a default that con-
flicts with another node’s default. In our approach, we chose
to prioritize the defaults of the source higher than the de-
faults of other nodes in the social network. This is reflected
in the algorithm, where we explictly add to the default the-
ory that the defaults associated with the source have higher
priority than all others. We believe this is the most appropri-
ate choice for the case when dealing with social networks.

If the choice to explicitly prefer the source’s defaults is
not made, then new cases of conflict can arise. Consider the
following abstract example. Suppose we have a root node
A with an edgeAB. Assume thatA has one default whose

consequent isϕ(x), i.e. δA =
>

ϕ(x)
, and thatB has one

defaultδB =
>

¬ϕ(x)
. Regardless of the valuetAB (or the

value of any other edgesA might have) we are guaranteed
to have an extension whereϕ(x) holds. The reason is that
A does not necessarily have an explicit trust rating for itself,
i.e. there is notAA value. Note that this is very different
from the usual reason for whyδA andδB would generate two
extensions in ordinary default logic. Therefore, in systems
where this value is not present or assumed, it seems there
is no way to determine the priority ofδA compared with
other defaults in the system. This issue will arise whenever
the source node has an applicable default whose consequent
might conflict with defaults of other nodes in the system.

In such cases, at least two simple resolutions are possible:

1. Make the assumption that the source node has “infinite”
credibility−i.e. one always trusts oneself over all others,
or alternatively,

2. Make the assumption that when getting a recommenda-
tion from other nodes, one should ignore one’s own pref-
erences.

In our approach, the first choice was made. We contrast
this with the case where specificity is used as a measure of
priority.



Priority and Specificity
In (Baader & Hollunder 1995), priorities between defaults
are induced by the specificity of their justifications. While
this approach is useful, it cannot resolve every case. In our
first example where John is the source node, a specificity-
based approach will not decide between Dave’s default rule
and Alice’s. In this case, our approach can be used tosupple-
mentthe priorities generated by specificity-based approach.

Going back to the issue raised by the preferences of the
source in the film example, we see that specificity might be
altogether inappropriate. For example, suppose that John is
the source node and we know that in general his preference
not to watch any film that is a comedy. Let’s assume that
we have one given film,c, and thatRomanticComedy(c)
andRomanticComedy(x) → Comedy(x). In this case, it
does not make sense for John’s choice to not watchc, based
on his preference, to be defeated by another nodeX, where

δX =
RomanticComedy(x)

Watch(x)
simply becauseδX is more

specific. John’s preference, while defined more generally
than that of nodeX, should still apply.

In the Tweety triangle, specificity clearly leads to the de-
sirable extension. In fact, whenever dealing with a set of de-
faults that are meant toclassifyobjects and their properties
most accurately, the specificity-based approach is generally
more appropriate. However, as we have shown, such an ap-
proach may fail if we use a set of defaults to express user
preference.

In summary, we have presented a preliminary cou-
pling between traditional default logic with priorities and a
method for inferring trust in web-based social networks. We
argue that the latter provides a good way to generate prior-
ities for default rules. This approach makes it possible to
make use of the many large and readily available existing
web-based social networks, thus grounding the priorities in
real web data. Such an approach differs from the more tra-
ditional approaches to priority, where the priorites are taken
as specifically tailored to the set of defaults at hand.

While the more traditional approach is appropriate for
closed knowledge representation systems, our approach
reuses existing web data, which makes the introduction of
prioritized defaults into established web systems less de-
manding. Furthermore, we emphasize that in a system
where default rules use a different mechanism for priorities,
user preferences, encoded as a web-based social network,
can be used as an alternative. That is, when the first mech-
anism of priority might be incomplete, the priorities gener-
ated from the social network can be used to possibly fill the
gap. In addition, we have also highlighted a case where a
specificity-based approach is likely to be inappropriate, and
where a trust value based approach shows more promise.

Future Work
The quality of the results obtained by prioritizing with trust
can be determined empirically when they are applied within
applications. One of the main networks we have used for
testing is part of the FilmTrust system. FilmTrust currently
uses inferred trust values to compute predictive movie rat-

ings customized to each user based on who they trust. How-
ever, the current system does not allow for users to specify
any default rules about their preferences. Such a default rule
system fits well in the context of films.

As part of our future work, we will be deploying a rule
system in the FilmTrust system1, a social network about
movies. These defaults will be used in two ways. First, they
can help tailor recommendations for the user who asserted
rules. They can also be used to filter recommendations for
others who trust the user who asserted the rules. In this ap-
plication, it will be common for defaults to conflict. In such
cases, trust is an obvious option for determining which rules
to apply.

This will allow us to quantitatively and qualitatively mea-
sure the performance of using trust for prioritizing defaults.
Showing that the trust-prioritized defaults improve perfor-
mance will validate how our approach can be used to de-
velop intelligent applications.
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