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Abstract: Probabilistic inference—the process of estimating the values of unobserved variables in
probabilistic models—has been used to describe various cognitive phenomena related to learning
and memory. While the study of biological realizations of inference has focused on animal ner-
vous systems, single-celled organisms also show complex and potentially “predictive” behaviors
in changing environments. Yet, it is unclear how the biochemical machinery found in cells might
perform inference. Here, we show how inference in a simple Markov model can be approximately
realized, in real-time, using polymerizing biochemical circuits. Our approach relies on assembling
linear polymers that record the history of environmental changes, where the polymerization process
produces molecular complexes that reflect posterior probabilities. We discuss the implications of
realizing inference using biochemistry, and the potential of polymerization as a form of biological
information-processing.

Keywords: probabilistic inference; molecular information-processing; single-celled organisms;
biological computation; changing environments

1. Introduction

Probabilistic inference—a procedure for estimating unobserved variables in proba-
bilistic models—has been used to describe various aspects of cognition [1,2]. In this line
of work, organisms are thought to build probabilistic models of their world and use these
to guide action and perception via inference. Although the work on biological instantia-
tions of probabilistic inference has focused on animal nervous systems [3,4], single-celled
organisms also show complex, history-dependent behaviors in changing environments.
This history-dependent character has been described in cognitive terms, such as “learning,”
“memory,” and “decision-making” [5–15].

The internal state of microbes, for instance, is shaped by past experiences [16–18].
B. subtilis populations exposed to distinct environmental perturbations and then grown in
the same environment can be distinguished (based on gene expression) for as long as 24 h
after the perturbation, suggesting that cells retain a “memory” of past environments [16].
E. coli cells grown in an environment that switches periodically from glucose to lactose even-
tually adapt to the switches and maintain a consistent growth rate through the switches [17].
Yeast strains anticipate their environment by producing a metabolic program needed to
metabolize an alternative nutrient, even before the preferred nutrient is depleted [19]. All
these behaviors occur on an ontogenetic timescale, much faster than that of mutation and
natural selection.

These observations raise the question of whether probabilistic inference can be realized
in cellular biochemistry. In principle, Chemical Reaction Networks (CRNs), commonly used
to formalize biochemical systems, can approximate any computable function [20,21]—and
therefore implement inference. Several studies have shown how CRNs can implement prob-
abilistic inference [22–26]. For instance, [22] showed it is possible to construct a CRN that,
at steady-state, encodes the joint probability distributions of probabilistic models known
as factor graphs, and suggested enzyme-free DNA strand displacement [27] as a physical
realization. However, strand displacement is an unlikely cellular mechanism. Moreover,
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cells act as the environment changes [13,24], and while the abundances of cellular compo-
nents change in a stochastic manner [28,29], which raises an important question: which
biologically plausible, cellular mechanisms can support inference under such stochastic
conditions? Some studies have explored phosphorylation and transcriptional regulation
as vehicles for forming memories and simple associations. For example, [10] designed
biochemical circuits, which use either phosphorylation or transcriptional control, that can
be conditioned through a unicellular analog of Hebb’s rule, while [30] evolved chemical
circuits in silico for associative learning. Such mechanisms could potentially be used to
build inference-performing circuits.

Yet biochemistry also includes generative and combinatorial mechanisms, such as
polymerization, which are not part of the typical repertoire of molecular mechanisms (e.g.,
protein phosphorylation or transcriptional regulation) that are thought to “compute” or
“process information”. Through polymerization, the cell produces structures such as micro-
tubules and actin cables, which are highly regulated [31] and crucial to a variety of cellular
functions. While these polymers are often studied for their mechanical properties [32], it
has also been recognized since the early days of molecular biology that polymerization can
be viewed as a computational process, capable of implementing logical automata [33] (more
recent studies have also explored the computational power and properties of polymers;
see [34] and references therein).

In this paper, we follow a similar line of thought, by exploring how the process
of polymer assembly can be used to realize probabilistic inference. We show how the
process of linear polymer assembly can be used to perform inference in a Markov model.
Our circuit uses the polarity of polymers and their constituents to create a molecular
record of the environment’s history (its past sequence of changes), which we show can be
used to anticipate the environment’s dynamics and regulate other biochemical programs.
This suggests that polymerization—due to its ability to produce macromolecules out
of many combinations of parts—can be a useful motif of biological computation. The
paper is organized as follows. We first introduce the use of probabilistic inference to
anticipate an environment that changes according to a Markov model, and derive the
representations and operations needed to approximately implement inference in real-time
in such an environment. We then describe a circuit that can perform these operations
by assembling linear polymers. We describe several properties of the circuit, and show
how the probabilistic information it records can be used to regulate a specific response
to environmental change. We close with a discussion of the properties of this circuit and
potential future directions.

2. Results
2.1. Real-Time Inference in Markov Chemical Environments

Probabilistic models have been used to represent a variety of dynamic, uncertain
environments. One of the simplest probabilistic models is the discrete-time, finite-state
Markov model, in which the state of the environment at time t is assumed to depend only
on the prior states going back to the t− k time point (where k is the order of the model; when
k = 1, we have a first-order Markov model). While this Markov assumption is violated by
many natural processes [35], it will serve as a useful idealization for understanding how
biochemical circuits that perform inference can be constructed.

We consider a changing environment that can be in one of two states, A or B, and where
switches between states are driven by the Markov model. Such models are parameterized by
two transition probabilities: the probability of switching from A to B, πAB, and the probability
of switching from B to A, πBA—as shown in Figure 1A. The transition probabilities are
unobserved. Through probabilistic inference, one could estimate the values of these
probabilities, and use this information to anticipate the environment’s switches—potentially
in a way that would be useful to an organism adapting to a changing environment.
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Figure 1. Computational representations and operations for inference in Markov environments.
(A) A discrete-time Markov model that switches between two states, A and B, parameterized by
two transition probabilities, πAB and πBA. Note that the probabilities of staying in the same state
(self-transitions, not shown) are derived from these two parameters (πAA = 1−πAB, πBB = 1−πBA).
(B) An environment generated using the model shown in (A). At fixed 20 time unit intervals, 100
units of A or B are pulsed in (after removing any prior A or B) and allowed to degrade (and/or be
consumed by the circuit; hence the diminishing abundances of A and B). Pulses denoted by arrow
heads. (C) Transition matrix T that represents the sufficient statistics for the model shown in (A).
Given the length of the sequence n drawn from the model, the sufficient statistics are the number
of switches from A to B, and the number of switches from B to A. (D) Transition operation on T,
which increments the appropriate counter when the environment switches from state i to j (e.g., A to
B). This operation is needed for implementing inference in the model. (E) Normalization-sampling
operation, which normalizes a row in T (converting counts to probabilities) and samples an entry in
proportion to its probability.

To guide our search for biological mechanisms that could instantiate inference in this
model, we analyze the task of inference in this model through David Marr’s three levels
scheme [36]. Marr’s scheme is a general “top-down” approach to understanding biological
computation that begins by describing the computational level (level 1): what are the “inputs”
and “outputs” to the task, and constitutes a “correct” solution? Given this computational
formulation of the task, the algorithmic level (level 2) asks for a suitable representation and
procedure for carrying out the task. Finally, the hardware level (level 3) asks for biologically
plausible mechanisms that can realize the representation and algorithm from level 2. The
idea is that each level guides and constrains the next level. We will apply this approach
to derive the computational representations and operations required for inference in our
probabilistic model (levels 1 and 2), and then construct a biological circuit guided by these
requirements (level 3).

We first constructed a Markov chemical environment whose dynamics are driven by
the Markov model shown in Figure 1A. We can think of this chemical environment as a
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bioreactor in which organisms grow, and where A and B are analogous to nutrients which
are flowed into the reactor by an experimenter and consumed by circuit. The Markov
chemical environment is created as follows. We used sequences sampled from the discrete-
time Markov model to add/remove A and B at fixed time intervals, as follows. Initially, a
state X0 ∈ {A, B} is sampled from the Markov model and a fixed amount of X0 is added
to a reactor which contains only our circuit (no A or B). After a fixed time interval, we
sample Xt+1 from the model given the previous state Xt. If Xt+1 = Xt, no perturbation
is performed; otherwise, we remove all A and B present in the reactor and add Xt+1. An
environment generated by this procedure using a Markov model where πAB = πBA = 0.95
is shown in Figure 1B.

Assuming the environment’s perturbations are generated by a Markov model, prob-
abilistic inference can be used to anticipate the environment’s states. In particular, it is
useful to compute the probability of encountering A or B next given past observations of
the environment’s states, history = 〈Xt, Xt−1, Xt−2, . . . 〉, where Xt corresponds to the state
of the environment at time t. In Bayesian terms, anticipation of the environment means
computing the posterior predictive distribution, P(Xt+1 | history). This computation is
complicated by the fact that the transition probabilities πAB and πBA are unknown. One
option in such cases is to place prior probabilities on these parameters and then integrate
them out to calculate,

∫
P(Xt+1 | history, πAB, πBA)dπABdπBA. We take an alternative and

sometimes simpler strategy of estimating the unobserved transition probabilities, πAB and
πBA, through Bayesian inference, and use these estimates to anticipate the next state:

(1)

If a mathematically convenient prior distribution is chosen for P(πAB, πBA), then
Equation (1) can be solved exactly (see Appendix A). Using the posterior distribution,
we can then obtain estimates of the transition probabilities, π̂AB, π̂BA, and use these to
anticipate the next state by sampling Xt+1 ∼ P(Xt+1 | Xt, π̂AB, π̂BA):

P(Xt+1 = A | Xt, π̂AB, π̂BA) =

{
1− π̂AB if Xt = A
π̂BA if Xt = B

An important complication in our setting is that cells act while the environment
is changing, so the posterior distribution (Equation (1)) must be estimated in real-time.
However, this computation simplifies considerably when we consider the representation
and algorithm needed to estimate the posterior distribution (Marr level 2). Crucially, the
sequence of observations about the environment, history, does not need to be stored in full;
it can be compressed into a matrix T of transition counts (Figure 1C). Assuming n possible
states of the environment, T is an n × n matrix whose ith row indicates the number of
times the environment switched from the ith state to each of the states. Since the sum of
the ith row must equal the total number of transitions from state i that have been observed,
the matrix can be summarized by n2 − n entries. In an environment with two states, the
sufficient statistics are simply two counts: the number of times the environment switched
from A to B, and from B to A (along with the total number of transitions; see Appendix A
for details).

Using these counts as the representation, the following elegant algorithm for comput-
ing the posterior distribution in real-time emerges. As the environment changes, update
the relevant counts in T. Then anticipate the next state given the current state i by: (1) nor-
malizing the ith row of T to convert counts into probabilities, and (2) sampling a state
from that row. This algorithm relies on a representation of counts (as stored in T), and
two computational operations. First, it is necessary to update the counts by a transition
update operation (Figure 1D) that distinguishes A to B transitions from B to A transitions.
Second, in order to use these counts in downstream computations, we need to be able
to convert the counts into probabilities by normalization and sample from the resulting
distribution; this is the normalization-sampling operation shown in Figure 1E. With these

P(πAB, πBA | history) ∝ P(history | πAB, πBA )P(πAB, πBA)
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three ingredients—the transition counts from T, an operation that updates the transition
counts, and an operation that normalizes and samples from a row of T—the posterior
distribution can be estimated in real-time.

2.2. Using Polymer Assembly to Represent a Changing Environment

To realize inference biochemically based on the above analysis, we need a biochemical
circuit that can perform the operations shown in Figure 1C–E. Such a circuit would need a
representation of the transition matrix T, which encodes the number of switches between
relevant states of the environment. Two operations on T would then need to be realized
molecularly: (1) the ability to count directionally, i.e., to record when the environment has
switched from state A to B (as opposed to from B to A) and store this information in T, and
(2) the ability to access a row of counts in T, normalize it, and sample from the resulting
probability distribution. This is challenging since directional counting requires recording
a potentially unbounded number of switches in the environment. Some digital counters
proposed in the synthetic biology literature, such as [37], have a fixed capacity—determined
by the number of genetically components—and are thus not suitable.

We instead constructed a biological realization of the counts matrix and its operations
using polymerization. We make use of the idea that the process of assembling a macro-
molecule such as a polymer can be seen as a computational process. The rules that say
how to add a new part (monomer), Xn+1, to an existing polymer X1-X2- · · · -Xn, depending
on the state of the new part Xn+1 and the configuration of the existing polymer’s end, Xn,
describe a logical flow [33]. A simple example would be the rule: if Xn+1 6= Xn, where
Xn+1 is a monomer, then add Xn+1 after Xn. If two types of monomers are available, e.g.,
Xi = A or Xi = B, then this process would generate alternating polymers such as A-B-A or
B-A-B-A. The polymerization process, then, is akin to running a kind of logical automata,
and the resulting polymer’s sequence is a record of the computation, similar to the output
tape of a Turing machine. In our case, however, the assembly process is not sequential
and deterministic (as it is in a Turing machine), but rather driven by concurrent, stochastic
biochemical reactions.

We use polymerization to represent directional changes in the environment by building
a set of linear polymers, which we call transition history polymers, made up of A and B
molecules. Each polymer represents the sequence of transitions that have occurred in the
environment. The process of assembling the polymer will allow us to count the number of
environmental transitions.

The transition history polymers are assembled as follows. We assume that the A and
B molecules have a distinguishable “head” site and “tail” site, and that each polymer is
built starting from a T monomer (which also has a head and tail site). Polymerization
then proceeds according to two sets of rules: (i) an unbound T can bind the head of a free
A or B molecule (i.e., those molecules whose head and tail sites are unbound), forming
a TA or TB dimer (Figure 2A, top); and (ii) the unbound tail of a TA or TB dimer can
bind the head of a free A or B (Figure 2A, bottom). This second set of rules records the
direction of change by producing memory molecules corresponding to each of the four
possible transitions: A-To-A memory molecule upon A to A binding, A-To-B upon A to
B binding, B-To-A upon B to A binding, and B-To-B upon B to B binding. For simplicity,
we assume all these polymerization rules are irreversible and proceed according to the
polymerization rate constant k. The process of polymer assembly thus implicitly “senses”
the environment, and uses the polarity of the polymer’s constituents to record the direction
of change. (Note that if A and B are viewed as nutrients, e.g., two different kinds of sugars
consumed by microbial cells a bioreactor, we cannot simply assume that these molecules
could polymerize into arbitrary linear polymers. However, we could always posit a third
“scaffold” protein, which binds A and B, and can differentially polymerize based on its
binding state, using the rules in Figure 2A. For simplicity, we assume A and B have those
polymerizing capacities directly.)
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Figure 2. A polymerizing circuit for inference in a Markov model. (A) Rules for assembling transition
history polymers. Solid line attached to a binding site, indicates a bond, squiggle indicates an
unbound site. Top: rules that seed the polymer by creating dimers between a T monomer and an A or
B monomer. Bottom: Rules that extend the polymer and record directional changes by producing the
appropriate memory molecule ex nihilo. On right, the row of the Markov model’s transition matrix
handled by each pair of polymerization rules. All polymerization reactions proceed irreversibly
with rate k. (B) Normalization-sampling operation for converting a row of counts (c1 and c2) from
a transition matrix into a probability vector and sampling an element from it. An Activator and
Repressor protein bind a site on an Integrator, in mutually exclusive fashion. (C) Normalization-
sampling circuit for the A-To-B and B-To-A integrators. Transition-encoding memory molecules act
as “activators” and duration-encoding memory molecules as “repressors.”

As a consequence of polymerization, the abundance of A-To-B and B-To-A will encode
the number of transitions from A to B and B to A, respectively, while the abundance of
A-To-A and B-To-B will correspond to the duration of each state (more on this point below).
We will refer to the A-To-B and B-To-A memory molecules as transition-encoding memory
molecules, because their abundance tracks switches, and the A-To-A and B-To-B memory
molecules as duration-encoding memory molecules, because their abundance tracks the
environmental state’s duration (a point we will return to below). We further assume that
the memory molecules are degraded at a constant rate. Thus, the polymer assembly process
will produce memory molecules that, if relatively stable, reflect the environment’s history
of transitions, as we will see below. Note that the number of polymers that the system
will construct will depend on the abundance of T monomers (which serve as the starting
monomers for polymers). The number of polymers being assembled will in turn affect the
abundance of memory molecules A-To-B and B-To-A, a point that we will return to below.
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The additional operation needed for realizing inference is normalization-sampling
(Figure 2B). Normalization-sampling means normalizing the transition counts, and then
sampling from the resulting probability distribution. On a traditional digital computer,
this is straightforward to implement sequentially. A standard algorithm for sampling from
a probability vector θ (in effect, sampling from a multinomial distribution) is: calculate
a cumulative sum up to each element θi, then iterate through θ, draw a uniform random
number w ∈ [0, 1] for each entry θi, and return the first θi such that ∑i

j=1 θj ≥ w. Within a
cell, however, there is no readily accessible notion of sequential iteration to support this
procedure; a concurrent mechanism is needed instead.

We can make use of the fact that concentrations lend themselves to encoding probabil-
ities (also discussed in [22]) to derive a non-sequential version of the same computation.
Consider two proteins, an activator and a repressor, that have expression levels c1 and
c2, respectively, (Figure 2B). We can normalize and sample from the vector θ = [c1 c2] by
having the activator and repressor bind, in mutually exclusive fashion, a third molecule
which we call an integrator. If the integrator is not in excess of the activator and repressor,
then the fraction of activator-bound integrator will be proportional to the concentration of
activator normalized by the sum of concentrations of activator and repressor (Figure 2B).
This means that a molecular interaction that depends on the concentration of activator-
bound integrator will occur in proportion to the probability c1

c1+c2
. This mechanism does not

depend on sequential order: the interactions between activator, repressor, and integrator
can all take place concurrently (similar integrator schemes have also used by other circuits
that sense environmental changes in a way that is sensitive to order of exposure, e.g., [38]).

To encode the posterior probability of encountering A (or B) given the environment’s
history, we can use the activator-repressor-integrator scheme to “normalize” the transition
counts encoded by memory molecules (Figure 2C). When the environment is in state A, the
A-To-B and A-To-B transition molecules will bind, in proportion to their abundance, to the
A-To-B-integrator. The fraction of integrator molecules bound by A-To-B (relative to those
bound by A-To-A) will represent P(A | history) (likewise for A-To-B and P(B | history). One
complication is that the duration-encoding memory molecules, A-To-A and B-To-B, whose
abundance is determined by the environmental state’s duration, will inevitably be more
abundant than A-To-B and B-To-A. Thus, the rate constants governing the interactions
between memory molecules and integrators have to be adjusted to account for this bias
(see Appendix A).

We have implemented this circuit using Kappa, a rule-based language for describing
and simulating stochastic biochemical systems (such simulations correspond formally
to continuous-time Markov chains as described in [39,40]). Rule-based representations
are especially suited for modeling polymerizing circuits such as this one, which may
correspond to an intractably large number of ODEs (due to the combinatorial explosion of
species [41]). We next explore several features of this circuit when exposed to changing,
probabilistic environments.

2.3. Circuit Behavior Reflects the Environment’s History

In order to simulate our model, we had to choose the number of polymers T that the
circuit has to work with. The resulting circuit is sensitive to the environment’s history.
When simulated (using Kappa) in a periodic environment (πAB = πBA = 0.95), the
circuit accumulates transition-encoding memory molecules at each switch (Figure 3A,B),
as expected.
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A

B

C

D

E

Figure 3. Stochastic simulation of the circuit in a periodic Markov chemical environment. (A) Environ-
ment in which A and B are pulsed and removed periodically, following a Markov model with transi-
tion probabilities πAB = πBA = 0.95. (B) Levels of circuit components. Transition-encoding memory
molecules A-To-B and B-To-A track transitions from A to B and B to A, respectively. Duration-
encoding memory molecules A-To-A and B-To-B track the duration of states A and B, respectively.
(C) Fraction of A-To-B integrator that is active, i.e., bound by A-To-B memory molecule (black), and
fraction of A-To-B integrator that is active, i.e., bound by B-To-A memory molecule (grey). (D) Medi-
ans of posterior distribution over the transition probabilities πAB (black, π̂AB) and πBA (grey, π̂BA),
calculated analytically using a discrete-time Markov model (each data point corresponding to a
50 time unit interval) with a uniform prior. (E) Polymers at the end of the simulation, plotted from
head (left) to tail (right) and ordered by size from shortest (top) to longest (bottom). Stretches of
green correspond to runs of As, stretches of blue to runs of B (there is no relationship between this
visualization of polymers and the time axis).

We next compared the circuit’s “posterior”—as encoded in the fraction of active
integrators—to the posteriors based on the idealized, discrete-time Markov model. The
posterior estimates of πAB, πBA in the idealized model are obtained by looking only at
the sequence of switches, 〈A, B, A, B, . . . 〉, with a uniform prior over the two states (see
Appendix A).

The fraction of active integrators qualitatively matches the posterior estimates of the
idealized model (Figure 3C,D). As the circuit accumulates A-To-B memory molecules, for
example, the fraction of active A-To-B integrators—i.e., those integrators bound by the
A-To-B memory molecule—increases, following the analytic estimates of the transition
probabilities (Figure 3C,D). Moreover, the linear polymers at the end of the simulation
reflect the history of periodic switches (Figure 3E).

When exposed to an environment with different statistics, the circuit behaves accord-
ingly. We considered an environment where A frequently switches to B, but switches from
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B to A are rare, meaning B is a “sticky” state (πAB = 0.85, πBA = 0.25) (Figure 4A). In
this environment, the transition-encoding memory molecules track the switches, but the
duration-encoding memory molecule B-To-B reflects that the environment tends to dwell
in state B (Figure 4B). As a result, the fractions of active A-To-B and B-To-A integrators
qualitatively track the analytic posteriors (Figure 4C,D). For instance, after the onset of B
(time 50), the fraction of active B-To-A decreases as the environment stays in B (Figure 4C,
time 50–750). The linear polymers assembled in this environment reflect this environment’s
history (Figure 4E). Thus, the circuit is not limited to one particular Markov environment,
but rather uses the process of polymer assembly to produce memory molecules that reflect
the environment’s transition history.

A

B

C

D

E

Figure 4. Circuit behavior in a “sticky” state environment. (A) Environment where transitions from A
to B are frequent but the B state is “sticky” (πAB = 0.85, πBA = 0.25). (B) Levels of circuit components.
(C) Fraction of active A-To-B and B-To-A integrators. (D) Posterior medians for transition probabilities
πAB (black, π̂AB) and πBA (grey, π̂BA), calculated using a discrete-time Markov model with a uniform
prior. (E) Polymers at the end of the simulation.

2.4. Activity of Integrator Complexes Reflects Posterior Probabilities

We next compared our circuit’s behavior to the idealized probabilistic model more
systematically, by exposing the circuit to many different assignments of the transition
probabilities πAB, πBA (Figure 5). For each environment, we first estimated the median
of the posterior over πAB at each time point and then took π̂AB to be the median of those
estimates (and similarly for πBA to obtain π̂BA). We then computed a similar quantity for
our circuit by taking the median of the fraction of bound A-To-B integrators through time
( ÎAB) and likewise for B-To-A integrators to obtain ÎBA.
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Figure 5. Comparison of circuit behavior with posterior estimates from idealized Markov model.
Comparisons are shown for 9 different settings of πAB, πBA that were used to produce changing
environments consisting of 50 perturbations (each with duration 50 time units). Each parameter
assignment is plotted in a different color (100 simulations per assignment). On x-axis, ratio of posterior
estimates π̂AB and π̂BA for πAB and πBA, respectively. π̂AB is the median of the posterior distribution
over πAB, and same for π̂BA (x-axis values were jittered with random, small values for visualization
purposes). On y-axis, ratio of the of active A-To-B integrator to that of active B-To-A integrator. ÎAB is
the fraction of active A-To-B integrators at the end of the environment (same for ÎBA).

Since these quantities are not directly, quantitatively comparable, we compared the
ratio of posteriors from the idealized model ( π̂AB

π̂BA
) with the ratio of the relevant active

integrators ( ÎAB
ÎBA

). The comparison shows broad agreement (rank correlation ρ = 0.94)
across different assignments of transition probabilities (each assignment was simulated
100 times, Figure 5). It is important to note that this can only be a qualitative comparison,
since the biological realization of the posterior and the analytic model begin from different
starting points (zero active in the circuit’s case, versus a 50%-50% prior in the analytic
model). Another caveat is these ratios being compared only reflect end-state results,
not differences in the temporal trajectory of posterior ratios. We also stress again that
the analytic model which operates in discrete-time is, by definition, an idealization that
could never perfectly match the biological circuit which operates in continuous time and
obviously lacks synchronous switches from one time point to another. In the next section,
we describe some properties of our polymerizing circuit and its difference from the idealized
discrete-time model.

2.5. Properties and Limitations of the Polymerizing Mechanism

While our circuit was guided by an analysis of inference in an idealized Markov model,
these results indicate an important difference between that abstract model and our circuit
as realized using polymerizing biochemical parts. Unlike in the abstract model we had
started with, the circuit consumes the very “signal” that it is responding to, as As and Bs
get incorporated into the circuit’s linear polymers. Thus, the circuit shapes the environment
it inhabits, rather than passively observing its dynamics.
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The magnitude of this effect will depend on the rate at which A and B are incorporated
into polymers (k in Figure 2A) and the number of polymers being assembled, which
is bounded by the abundance of T monomers. The rate of polymer assembly will in
turn influence the rate of production of memory molecules. If A and B are abundant
and T is small, as in Figures 3 and 4 where there are 20 Ts, then a single switch from,
say, A to B can produce at most 20 A-To-B memory molecules. The concentration of T,
therefore, influences the magnitude of the circuit’s memory (measured by copies of memory
molecules), and this in turn affects the sensitivity and noise in the binding of integrators
(in all of the above simulations, integrators are assumed to be fixed at 400 copies). The
parameters governing polymer assembly, therefore, shape how responsive the circuit can
be to environmental change.

The abundance of the circuit’s components relative to those of A and B also matters.
In all of our simulations, A and B were far more abundant (5000 copies) than the number of
polymers being assembled (10 Ts), and we chose an appropriately small polymerization rate
constant (k = 0.0001; recall that k is the rate constant governing the addition of monomers
to the end of a polymer). If A and B were in low abundance and/or the polymerization
rate was really slow, then environmental switches would go undetected. On the other
hand, if the polymerization rate was too high and/or the concentration of T too high,
the circuit could in theory consume all the “nutrients” (using these to construct very
long polymers), and therefore become insensitive to different durations (i.e., be unable to
produce duration-encoding memory molecules). Naturally, the stability of the memory
molecules produced through polymerization will determine how far back the circuit will
“remember” environmental switches.

2.6. Environments with Changing Dynamics

While the periodic and “sticky” environments we have explored produce very different
sequences of switches, both fall within our definition of Markov environments. Moreover,
we have assumed that each environment follows the same set of transition probabilities
throughout. We next asked how the circuit would behave in environment’s where there is
a sudden change in the way that the environment changes (similar to the “meta-changing”
environments described in [13]).

In the environment shown in Figure 6, for example, the initial sequence of switches
(time 0–500) is drawn from a periodic environment, πAB = πBA = 0.95, and the remaining
sequence from a “sticky” B environment, πAB = 0.85, πBA = 0.05 (Figure 6, time 500
through end). The circuit adapts to the new set of statistics, as seen in the changing curve of
fraction of active integrators (Figure 6C, starting at time 500). The resulting polymers also
correctly reflect the environment’s two distinct segments (Figure 6E). Naturally, the rate at
which the circuit will adapt to such changes in the environment’s underlying dynamics
will depend on how quickly the memory molecules are degraded.
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A

B

C

D

E

Figure 6. Circuit behavior in an environment that switches its dynamic. (A) Environment follows a
periodic dynamic (πAB = πBA = 0.85) and switches to a sticky B dynamic (πAB = 0.85, πBA = 0.05,
marked by vertical red line). (B) Levels of circuit components. (C) Fraction of active A-To-B and
B-To-A integrators. (D) Posterior medians for transition probabilities πAB (black, π̂AB) and πBA (grey,
π̂BA), calculated using a discrete-time Markov model with a uniform prior. (E) Polymers at the end
of the simulation.

2.7. Using Probabilistic Information to Regulate Other Processes

The probabilistic information obtained from the history of switches may be used to
regulate other processes within the cell, such as a response to a specific environment. For
this to be possible, as some cognitive scientists have argued, the information has to be
“accessible” [42]. For accessibility, it is not sufficient to only have the system “contain” the
information in its states in an information-theoretic sense (as was shown for memory in
B. subtilis [16]). Rather, the information has to be instantiated in a form that is usable by
other molecular processes within the cell.

We next show how the probabilistic information about the environment’s history can
be used to regulate an environmental state-specific program, as shown in Figure 7A. In
this scenario, the organism is probabilistically presented with a toxin, and (1) an anti-toxin
program is required in order to increase chances of survival or growth, (2) the anti-toxin
program takes time and substantial energy to produce (so it cannot be kept on at all times).
Depending on the frequency of the toxin, the timescale of environmental change, and
the associated metabolic costs, there are scenarios where it makes sense for organisms to
anticipate the onset of the toxin and produce the program in advance ([13]; see also [43] for
a seminal discussion of such trade-offs in changing environments).
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Figure 7. Regulating a state-specific program. (A) Hypothetical environment in which a toxin (blue
horizontal lines) is pulsed periodically. An ideal expression profile for an anti-toxin program (black
line): the program reaches peak expression at the onset of the toxin, and the maximal expression
of the program increases as more switches between the toxin and non-toxin states are experienced.
(B) A circuit for regulating a program specific to the B state, B-Program, and associated rate constants.
(C) Behavior of circuit with state-specific program regulation, with rates optimized as defined in main
text. (i) Levels of unbound A and B. Note that some A and B molecules are bound to integrators
during a switch, which results in a mixture of As and Bs in the next pulse. (ii) Levels of circuit
components. (iii) Fraction of active A-To-B and B-To-A integrators. (iv) The desired expression
profile for B-Program (black line), used to optimize the rate constants, and the observed B-Program
profile (blue line). (v) Transition history polymers at end of simulation (note the circuit was simulated
with 100 T monomers).
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We consider an abstract version of this problem in which a protein associated with the
B state, B-Program (akin to the anti-toxin program), has to be produced prior to the onset
of B in a periodic environment. We assume that the ideal expression profile of B-Program
would one where B-Program is produced in advance, reaches its peak at the onset of B,
and then degraded (as shown in Figure 7A). Moreover, as the circuit experiences more
periodic switches, we expect the regulation of B-Program to become more pronounced,
reflecting the fact that more “data” about the environment’s transition probabilities has
been obtained.

To create this anticipatory behavior, we can utilize the posterior probability of encoun-
tering B, encoded in the integrator-memory molecule complexes. We designed a circuit
that regulates B-Program in proportion to its posterior probability as encoded by these
complexes (Figure 7B). This posterior probability is encoded in the fraction of A-To-B inte-
grators that are active, i.e., bound by the A-To-B memory molecule. When A is present, it
can bind these active integrators, forming a complex that produces B-Program (Figure 7B).
However, when A binds an A-To-B integrator that is repressed (i.e., bound by A-To-A
memory molecule), the resulting complex will degrade B-Program. When B is present, a
symmetric circuit that uses the B-To-A integrator to enact the same logic with B-To-A and
B-To-B memory molecules.

Crucially, the rate constants governing this circuit must match the timescales of change
in the environment. If the desired behavior is to have the A-specific program (for example)
reach its maximal expression prior to the onset of A, the circuit must be tuned to the average
duration of A and B states. This “tuning” is reflected in the choice of rate constants. The rate
constants for these interactions—which determine the binding of A and B to integrators,
and the production/degradation of B-Program—have to be assigned in a way that produces
the desired “sawtooth” expression profile shown in Figure 7A. We used an optimization
procedure to set these rates (see Appendix A for details). With the resulting rate constants,
the circuit indeed regulates B-Program in sawtooth-like fashion, where the regulation
becomes more pronounced with increasing exposure to switches (Figure 7C). This behavior
is consistent with the idea that more experiences of the environment lead to more confident
estimates of transition probabilities (by accumulation of memory molecules), and that more
confident estimates produce sharper responses to switches. Note that due to the regulation
of B-Program, some of the A to B molecules remain bound to integrators during a switch,
and are thus not removed, resulting in a mixture of A and B molecules in the next state.
The number of molecules that can be carried over in this way is bounded by the number of
integrator molecules.

3. Discussion

We have described a polymerizing circuit that performs probabilistic inference in a
Markov model. Our analysis of the requirements of real-time inference in the Markov
model led us to look for ways to biochemically realize two somewhat counter-intuitive
operations: directional counting and normalization-sampling. The first was performed
through polymer assembly, relying on the polarity of polymers and their constituents.
The second was performed using a scheme where a pair of proteins bind to a third “in-
tegrator” protein in mutually exclusive fashion. With these two operations, the circuit
can be used to regulate another biochemical process of interest, such as an environmental
state-specific program.

The resulting circuit has several interesting properties. First, this circuit exhibits
predictive behavior in a dynamic environment without relying on mutation and natural
selection across generations. While mutation and selection can, from a mathematical
perspective, implement solutions to probabilistic inference problems [44], and Darwinian
evolution and inference algorithms have been argued to be conceptually similar strategies
for solving the same basic problem [45], mutation and selection are nonetheless biologically
distinct processes that operate on longer timescales than ontogenetic ones. The former
operate on longer timescales; the latter can occur, theoretically, during the “lifetime” of
a single cell experiencing environmental change. The ontogenetic behavior we explored
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is therefore distinct from laboratory evolution experiments with microbes or in silico-
evolved circuits that were selected to fit a particular environment (although several previous
studies have presented such experimental results as evidence of “predictive” cellular
behavior [46,47], as argued in [30]).

Second, our circuit consumes the “signal” (A and B, in our case) that it anticipates.
These molecules become part of the circuit (organism) through the process of polymer
assembly. While we have referred to “the environment” as if separate from the circuit, this
circuit actually alters the concentration of A and B (the magnitude of the effect depends on
the relative abundances of nutrients and the rate of polymer assembly). This demonstrates
the blurry line between metabolism and signal transduction [48].

Since the circuit records the history of change in polymers, this opens up possibilities
for molecular mechanisms that utilize these sequences by interacting with the polymers. A
variety of molecular mechanisms, such as kinesin motors that walk along microtubules—
which have been intensively studied experimentally [49] and theoretically [31]—can be a
source of inspiration. Microtubules can also be regulated through myriad post-translational
modifications to tubulin proteins, which have been viewed as a kind of combinatorial
“tubulin code” [50–52]. These modifications can affect the localization and size of micro-
tubules by tuning the binding of microtubule-regulating proteins. Such mechanisms can
also be explored as forms of biological information-processing.

A theoretical study of these mechanisms would benefit from further development
of formal languages for representing and simulating combinatorial biochemistry, such as
Kappa [40]. Kappa, for example, currently does not explicitly model physical space, which
raises a challenge: how to capture more of the ways in which physical space constrains and
shapes polymerization—in a dividing cell, for instance—while keeping the formal language
sufficiently abstract so as to be interpretable, and the simulations tractable? Computational
tools for visualizing polymer assembly, through time and space, could also help the study
of polymerization as a form of information-processing.

Several open questions about polymerization and inference also remain. It would be
interesting to explore how the circuit design we have proposed can be adapted to more
complex environments. A recent study has investigated how inference in hidden Markov
Models can be performed using CRNs [53], and it would be worth exploring whether a
polymerization scheme for real-time inference of the sort we have developed could be used
for these more complex Markov models that have latent states. Similarly, it may be fruitful
to explore how circuits could cope with “meta-changing” environments whose dynamics
change according to yet another unobserved stochastic process [13]. Another avenue would
be to explore the energetic costs of such inference-performing circuits, and how they might
be integrated into a larger cellular model that accounts for cell division, growth, and the
cell’s self-producing (“autopoietic”) capacity [54,55].
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Appendix A. Methods

Appendix A.1. Real-Time Inference in a Discrete-Time Markov Model

We briefly describe an algorithm for real-time inference in a Markov model (which
was used to generate the analytic estimate of the posterior in all figures). We assume a first-
order, discrete-time Markov model over two discrete states, A and B, which is characterized
by transition probabilities πAB and πBA (where πAA = 1− πAB and πBB = 1− πBA). A
sequence of observations is generated from the model by first sampling an initial state X0
(from a uniform prior over A and B) and sampling subsequent observations X1, X2, X3, . . .
using the transition probabilities:

• If Xt = A, sample Xt+1 ∼ Bern(1− πAB)
• Otherwise, if Xt = B, sample Xt+1 ∼ Bern(πBA).

The quantity of interest here is the posterior distribution over transition probabilities:

P(πAB, πBA | history) ∝ likelihood× prior

∝ P(history | πAB, πBA)P(πAB, πBA)

where history stands for the sequence of observations of past states, 〈Xt, Xt−1, . . . 〉. A
standard approach is to use independent priors over the transition probabilities, which lets
us treat the posterior for each parameter separately:

P(πAB | history) ∝ P(history | πAB)P(πAB)

P(πBA | history) ∝ P(history | πBA)P(πBA)

A convenient choice of prior over transition probabilities is the Beta distribution. A
Beta distribution, Beta(θ; α0, α1), over θ ∈ [0, 1] is determined by a pair of shape parameters
α0, α1. Different settings of the alphas can be used to encode distinct beliefs about θ. As
examples: α0 = α1 = 1 is equivalent to a uniform distribution over [0, 1], α0 = α1 = 100 is a
unimodal distribution whose mode is at θ = 0.5, and α0 < 1, α1 < 1 (e.g., α0 = α1 = 0.5) is
a U-shaped distribution corresponding to the belief that θ is likely to be close to 0 or 1. The
Beta distribution is conjugate to the binomial distribution [56], meaning that a posterior
that is the product of a Beta prior and a binomial likelihood equals another Beta distribution
whose parameters can be calculated exactly.

The observations of the environment, history, can be compressed into a set of counts
(as described in main text) that are binomially distributed, which allows us to use the
Beta-Binomial conjugacy to calculate our posteriors of interest analytically. For a two-state
Markov model, the relevant counts are: (1) cAB, the number of A→ B transitions, (2) cBA,
the number of B→ A transitions, and (3) the number of total switches s in history. (Note
that the other entries of the transition counts matrix T can be computed from this pair
of summary statistics and s: cAA = s− cAB and cBB = s− cBA.) We can then expand the
posterior over πAB as follows:

P(πAB | history) ∝ P(history | πAB)P(πAB)

∝ P(cAB, s | πAB)P(πAB)

∝ Bin(CAB; πAB, s)Beta(πAB; α0, α1)

= Beta(πAB; CAB + α0, s− CAB + α1)

(and similarly for πBA.)
This posterior can be computed in real-time up through the kth observation (a task

which is called “filtering” [57]) using a recursive procedure that proceeds as follows. Let
Ck

AB be the number of A → B transitions up to the kth observation, and let bk
πAB

be the
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posterior up to the kth observation. The base case of the procedure is the first observation,
which is the switch from X0 → X1 (where k = 1):

b1
πAB

= P(πAB | 〈X1, X0〉)
∝ Bin(Ck

AB; πAB, k)Beta(πAB; α0, α1)

= Beta(πAB; Ck
AB + α0, s− CAB + α1)

We can now define the bk+1
πAB

in terms of bk
πAB

by noting that the posterior as of the
kth observation, bk

πAB
, serves as the prior at k + 1. Let αk

0, αk
1 be the parameters of bk

πAB
.

Now let IAB be an indicator variable that is 1 if Xk → Xk+1 is an A→ B transition (and 0
otherwise), and IAA an indicator variable that is 1 if Xk → Xk+1 is an A → A transition
(and 0 otherwise). Then the posterior after the k + 1 observation is:

bk+1
πAB

= Beta(πAB; αk
0 + IAB, αk

1 + IAA)

Note that if Xk = B, then IAB = IAA = 0, which means the estimate of the posterior
over πAB does not change (i.e., bk+1

AB = bk
AB). The same derivation as above applies to the

posterior over πBA.
To estimate the posterior over the transition probabilities in the above figures (e.g.,

Figure 3D), we used the median of the posterior distribution at each time step.

Appendix A.2. Adjustment of Rate Constants for Normalization-Sampling Circuit

As noted in the main text, the rate constants for the normalization-sampling circuit, which
control the binding of integrators to memory molecules, have to be adjusted to account for the
fact that memory molecules encoding transitions (A-To-B and B-To-A) will inevitably be less
abundant than the memory molecules encoding durations (A-To-B and B-To-A). The four rate
constants to be adjusted for the A-To-B integrator are shown in Figure A1 (the analogous set of
rate constants for B-To-A integrator are not shown). The normalization-sampling circuit for the
A-To-B integrator is modeled by the following reactions:

MAB + I
k1−⇀↽−
k2

C

MAA + I
k3−⇀↽−
k4

D

where MAB and MAA are the species of unbound A-To-B and A-To-A memory molecules
(respectively), I the unbound integrator, C the integrator-bound A-To-B memory molecule,
and D the integrator-bound A-To-A memory molecule. In order to accurately reflect the
environment’s statistics, the transition-encoding memory molecules for the integrators should
be higher than those of duration-encoding memory molecules. But how much higher?

We selected rate constants that, in a specific environment that switches evenly between
A and B for N pulses, would result in half of the A-To-B integrator molecules bound
by A-To-B and the other half by A-To-A (and likewise for B-To-A integrators). Such an
assignment of rate constants means that the circuit accurately reflects the environment’s
statistics of equal switching, and that after N pulses, half of the integrators are occupied.
(The latter is a reasonable but somewhat arbitrary choice; depending on the abundance
of integrators and the nutrients in the environment, one could choose rate constants that
result in a different fraction of the integrators being used.)

To assign the rate constants, we used the following combination of simulation and
analytic calculation. We first simulated our circuit, initialized with 20 T monomers and
400 integrators, on a perfectly periodic environment (πAB = 1.0, πBA = 1.0) consisting of
30 pulses (each with duration of 50 time units). We then obtained the resulting abundance
of memory molecules (A-To-A, A-To-B, B-To-A, B-To-B).
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Figure A1. Adjustment of rate constants for the normalization-sampling circuit. (A) Rate constants to
be adjusted for the A-To-B integrator. An equivalent set of rates for B-To-A integrator is not shown.
(B) Procedure for adjusting the rate constants by first simulating a specific periodic environment to
obtain the level of memory molecules, and then analytically solving for the desired rate constants as
described in Appendix A.

We then expressed the normalization-sampling circuit described above as the following
system of equations, which we represented in the computer algebra system Sympy [58]:

MAB0 − C−MAB = 0

MAA0 − D−MAA = 0

I0 − C− D− I = 0

k1MAB I − k2C = 0

k3MAA I − k4D = 0
C

MAB I
− k1

k2
= 0

D
MAA I

− k3

k4
= 0

C
C + D

− 0.5 = 0

where MAB0, MAA0, I0 are the initial amounts of (unbound) memory molecules and integra-
tors, respectively. We plugged in I0 = 400, and the abundances of the memory molecules
from our simulation on a periodic environment for MAB0, MAA0. Since we aim to have half
of the integrators bound by MAB and the other half by MAA, we set C = D = 1

2 I0. We then
assumed that the backward rate constants are equal and set them to a reasonable value
(k2 = k4 = 0.005) and solved for k1, k3 using Sympy. For the specific periodic environment
we used, this calculation produces k1/k3 ≈ 45.
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Appendix A.3. Stochastic Simulations

All stochastic simulations of the circuit were performed using the Kappa simulator,
KaSim (version: v4.1-8-ge04a210d8). Example Kappa programs used in the analyses:

• Kappa program for circuit in periodic environment (https://gist.github.com/yarden/
3fda6f13d1af7d7b628c0a4b48a04529 (accessed on 12 July 2021.))

• Kappa program for circuit with regulation of B-Program (https://gist.github.com/
yarden/8de42a93381d6c364bbc93293a56b4e4 (accessed on 12 July 2021.))

Appendix A.4. Optimizing Rate Constants for State-Specific Program Regulation

To regulate B-Program in a sawtooth-like manner (Figure 7A), we searched for an
assignment of the six parameters shown in Figure 7B: rate constants for integrator binding
to A or B (k f

I,N, kr
I,N), and for the production/degradation of B-Program by complexes of

integrators, memory molecules, and A or B (kon
AB, koff

AA, koff
BA, kon

BB). While it would be more
computationally efficient to search over this six-dimensional space by converting our
Kappa program to ODEs, our circuit polymerizes and so cannot be accurately simulated as
ODEs. We therefore used KaSim to stochastically simulate the full Kappa program for our
circuit. We therefore optimized the rate constants vector R = [k f

I,N, kr
I,N, kon

AB, koff
AA, koff

BA, kon
BB]

by working with the circuit as represented in Kappa, simulated using KaSim.
We defined a sum of squares loss function, L(y, s), to score a simulated values of the

B-Program, y = 〈y0, . . . , yT〉, against the desired sawtooth-signal s = 〈s0, . . . , sT〉, where
t ∈ {0, . . . , T} are the simulation time bins: L(y, s) = ∑T

t=0|yt − st|. To compute the loss
for a given assignment of R, we simulated the circuit with these assignments and scored
the resulting values of B-Program (smoothed with 3 time unit sliding window) against the
sawtooth signal using L. We optimized R using scipy’s minimize function [59] (initialized
with a reasonable guess).
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