Modeling Semantic Cognition as Logical Dimensionality Reduction


Semantic knowledge is often expressed in the form of intuitive theories, which organize, predict and explain our observations of the world. How are these powerful knowledge structures represented and acquired? We present a framework, logical dimensionality reduction, that treats theories as compressive probabilistic models, attempting to express observed data as a sample from the logical consequences of the theory’s underlying laws and a small number of core facts. By performing Bayesian learning and inference on these models we combine important features of more familiar connectionist and symbolic approaches to semantic cognition: an ability to handle graded, uncertain inferences, together with systematicity and compositionality that support appropriate inferences from sparse observations in novel contexts.

Proceedings of Thirtieth Annual Conference of the Cognitive Science Society (2008)